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ABSTRACT: While the majority of stroke researchers use frequentist statistics to analyze and present their data, Bayesian statistics are 
becoming more and more prevalent in stroke research. As opposed to frequentist approaches, which are based on the probability that 
data equal specific values given underlying unknown parameters, Bayesian approaches are based on the probability that parameters 
equal specific values given observed data and prior beliefs. The Bayesian paradigm allows researchers to update their beliefs with 
observed data to provide probabilistic interpretations of key parameters, for example, the probability that a treatment is effective. 
In this review, we outline the basic concepts of Bayesian statistics as they apply to stroke trials, compare them to the frequentist 
approach using exemplary data from a randomized trial, and explain how a Bayesian analysis is conducted and interpreted.
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Currently, the majority of stroke research results are 
reported using a frequentist approach. Frequentist 
statistics tell us how likely it is to see a result that is 

as extreme as, or more extreme than, the observed result 
given an underlying assumed distribution.1 One key con-
cept in frequentist studies is hypothesis testing, whereby 
the null hypothesis usually denotes that there is no differ-
ence between 2 groups: for example, the null hypothesis 
could be that there is no difference in clinical outcomes 
between the control and treatment arms of a clinical trial. 
One key measure in frequentist hypothesis testing is the 
P value; that is, the probability of obtaining a result as 
extreme or more extreme as the observed result given the 
null hypothesis is assumed to be true. If this probability is 
less than a prespecified threshold (conventionally P<0.05 
is used as a threshold), we reject the null hypothesis.

See related articles, p 2726, p 2731

Frequentist analyses allow for the incorporation of 
existing evidence at the design stage but not at the 
analysis stage. For example, when the sample size of a 
randomized trial is determined during the trial planning 
phase, investigators must estimate the treatment effect 
and corresponding variability based on existing evidence 
from prior studies, observational data, or their own clini-
cal experience. Once the trial protocol is finalized, prior 
information does not have any further impact.

From a technical standpoint, frequentist analyses are 
often misinterpreted. For example, failure to reject the null 
hypothesis simply means that we have failed to find evi-
dence against it, but it is not proof of a lack of an effect 
(absence of evidence is not evidence of absence).2,3 To 
add another example, the 95% CI often used in frequentist 
statistics does not indicate that the population parameter 
falls within the confines of that interval 95% of the time 
(this is in fact the definition of the 95% credible interval 
that is used in Bayesian statistics). Rather, the frequentist 
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95% CI is defined as follows: if the experiment were to be 
exactly replicated 100 times, with 100 distinct estimates 
and CIs, we expect 95 of the 100 intervals to capture 
the population parameter within them.4 Thus, a 95% CI 
denotes a 95% probability that the interval captures the 
population parameter, rather than the probability that the 
population parameter falls within the interval.

The Importance of the P Value
The P value is a key measure of the hypothesis test. It 
describes how likely it is to see results as extreme as, 
or more extreme than, the observed results if the null 
hypothesis is true (eg, if there is no difference between 2 
groups or no effect of the treatment). It does not provide 
information on the magnitude of the observed difference 
or treatment effect although it is sometimes mistaken as 
such. A common misunderstanding of the P value is that 
it represents a predictive value (ie, the probability that the 
null hypothesis is false). Limitations of using the P value 
as a means to draw inferences from trial data have been 
reviewed in an earlier paper in this series (Reeves et al: 
The Changing Landscape of Randomized Clinical Trials 
in Stroke: A Series of Commission Papers That Explain 
Contemporary Trial Designs and Methods).

Although not unique to frequentist statistics, the com-
mon approach of dichotomizing research results into sta-
tistically significant versus nonsignificant is flawed. On 
the one hand, only a small change is required to move 
a nonsignificant result to a significant result (eg, it is 
plausible that a change of outcome status in 1 single 
trial participant could change the P value from 0.051 to 
0.049; the results are significant but fragile5). Thus, it is 
always preferable to report exact P values rather than 
simply stating that a result was significant or not signifi-
cant. For example, a P value of 0.08 should be interpreted 
much differently than a P value of 0.87 although both are 
nonsignificant. Ironically, as a result of this dichotomiza-
tion at the 0.05 level, the difference between significant 
and nonsignificant results is often itself not significant.6 

Dichotomization is not a problem of frequentist statistics 
themselves but rather a problem of how they are inter-
preted in practice, where a strong, universal emphasis is 
put on a frequentist P value cutoff of 0.05 to denote a 
statistically significant result.

Frequentist statistics are currently the most commonly 
used analytical approach in medical research, and most 
stroke researchers and clinicians are familiar with the way 
frequentist study results are presented and interpreted. 
In many instances, a frequentist P value is well-suited to 
answer the research question if the study is testing a spe-
cific hypothesis. However, often, the research question is 
actually to estimate the magnitude of the treatment effect 
with a certain precision. Analysis and reporting should then 
focus on estimation and 95% CIs (a common theme of 
modern journals). In addition, it is more appropriate to ana-
lyze and interpret study results in the context of preexisting 
or coexisting evidence and beliefs rather than in isolation.7

KEY PRINCIPLES OF BAYESIAN 
STATISTICS AND COMPARISON TO THE 
FREQUENTIST APPROACH
Research does not take place in a vacuum, and contex-
tualizing study results by incorporating existing evidence 
can be helpful. A Bayesian approach to statistics enables 
researchers to do exactly this: evidence from prior stud-
ies can formally be incorporated into the analysis in the 
form of priors.8 Although this is also true of frequentist 
adaptive study designs, the accumulating evidence from 
the current, ongoing study can also be used to modify 
the study in a prespecified manner (Bayesian adaptive 
study design). Key concepts of Bayesian and frequentist 
approaches are explained in Table 1.

A key advantage is that the Bayesian approach pro-
vides a probabilistic interpretation of model parameters. In 
contrast to P values, a Bayesian analysis directly informs 
us how likely an experimental treatment is beneficial 
in a study population. Furthermore, it allows research-
ers to calculate the Bayes factor, a likelihood ratio that 
compares how well the null hypothesis and alternative 
hypothesis predict that data9 (see detailed explanation in 
the Supplemental Appendix).

At a high level, a Bayesian scientist starts with a belief 
about a parameter (eg, treatment benefit) based on pre-
ceding evidence or experience, collects new data, and 
subsequently updates that belief based on the observed 
data. Technically, this is done by formalizing prior knowl-
edge (eg, from preexisting studies) in a prior probability 
distribution called, the prior. The new data observed in 
the current study are then formalized in a second prob-
ability distribution, the likelihood. These 2 distributions 
are mathematically combined to form a third, posterior 
probability distribution. The underlying assumption (prior) 
is updated by the observed data (likelihood), and the 

Nonstandard Abbreviations and Acronyms

DAWN  Clinical Mismatch in the Triage of 
Wake Up and Late Presenting Strokes 
Undergoing Neurointervention With 
Trevo

ENRICH  Early Minimally Invasive Removal of 
Intracerebral Hemorrhage

EVT endovascular treatment
FDA US Food and Drug Administration
OR odds ratio
PROPPR  Pragmatic Randomized Optimal 

Platelet and Plasma Ratio
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updated assumption is called the posterior distribution. 
The mathematical formulation of this process is made 
possible via the Bayes theorem, given by the following 
formula in which H represents a hypothesis:

Probability (H|Data) = Probability (Data | H) ∗Probability (H)

Probability (Data)
.

The Bayes theorem states that the probability of a 
hypothesis of the given observed data is equal to the data 
likelihood times the prior probability of the hypothesis, 
divided by the unconditional probability of the data. The 
posterior distribution forms the foundation of Bayesian 
inference, including estimation and hypothesis testing. 
The Bayesian posterior allows probabilistic interpretation 
of hypotheses and parameters; for example, the posterior 
can provide the estimated probability that a treatment is 
effective.

Because of the ability to formally combine prior infor-
mation with observed data to formulate a posterior belief, 
the Bayesian approach can be seen as the mathematical 
embodiment of clinical diagnostic or therapeutic reason-
ing: imagine a stroke neurologist on call who has a cer-
tain base assumption of the probability that a code stroke 
will result in a thrombectomy. Let us assume that based 
on many years of clinical experience, the stroke neurolo-
gist knows that on average, 15% of all code strokes will 
undergo thrombectomy. When the code stroke is trig-
gered, she assumes that the probability of this particular 
code patient with a stroke undergoing a thrombectomy 

is roughly 15%. After examining the patient who has a 
severe deficit with a National Institutes of Health Stroke 
Scale score of 20, she may update her estimate: the 
additional information makes it much more likely that 
this patient will undergo a thrombectomy. After hav-
ing obtained these additional data, the neurologist now 
estimates the probability of thrombectomy at 60%. The 
patient may then undergo a computed tomography angi-
ography, which shows a large vessel occlusion: it has now 
become even more likely that the patient will undergo a 
thrombectomy, and the neurologist may update her previ-
ous estimate once more, from 60% to 90%. While this 
example pertains to individual decision-making in the 
clinical setting, this example illustrates how the principle 
of updating prior beliefs based on new data is a natural 
part of scientific reasoning and clinical practice.

Choosing the Right Prior: A Key Requirement 
for Bayesian Statistics
While the possibility to incorporate prior information into 
the analysis is viewed by many as a great advantage of 
Bayesian statistics (relative to frequentist statistics), the 
Bayesian reliance on priors can be alternatively viewed 
by others as a disadvantage. A common criticism is that 
the choice of the priors is subjective and may have a large 
influence on the interpretation of the Bayesian analysis.10

In general, the more informative the prior (eg, the 
larger the sample size, the smaller the variance, and the 

Table 1. Key Terms Used in Bayesian Analysis and Their Definitions

Key term Definition 

Frequentist methods

  Null hypothesis Hypothesis intended to disprove, expressed as a population parameter equal to the null value (typically 0). For example, the  
hypothesis that the mean difference between treatment groups equals 0.

  Alternative hypothesis Hypothesis intended to prove, expressed as a population parameter, is different than the null value. For example, the hypothesis is 
that the mean difference in treatment groups is >0.

  P value Probability of obtaining a result as extreme or more extreme than the observed result given the null hypothesis is true.

  95% CI If an experiment were to be exactly replicated 100×, with 100 point and interval estimates generated, we expect 95 of the  
generated intervals to capture the (unknown) population parameter within them. Therefore, a 95% CI implies a 95% probability that 
the interval captures the population parameter, rather than a 95% probability that the population parameter falls within the interval.

Bayesian methods

  Prior probability  
distribution (“prior”)

Assumed probability distribution of a certain parameter (eg, a proportion of patients or an effect size estimate) before the data from 
the current study/trial is taken into account.

  Posterior probability 
distribution (“posterior”)

Probability distribution for Bayesian inference that is obtained by updating the prior probability distribution with observed data from 
the current study/trial.

  95% credible interval Interval that contains the true parameter with 95% probability. Therefore, a 95% credible interval implies a 95% probability that the 
true (unknown) parameter falls within the interval.

  Bayes factor Posterior odds of 1 hypothesis versus another when the prior probabilities are the 2 hypotheses are equal, represented as ratio >0. 
The calculation involves a ratio of marginal likelihoods that integrate over the parameter prior distributions, which can be difficult to 
compute.

  Bayesian hierarchical 
model

Bayesian models that incorporate multiple levels of clusters/groups in the data, thereby allowing for partitioning of sources of  
variability (eg, variability at the study, patient subgroup, individual patient level). Bayesian hierarchical models also allow for shrinkage 
estimation/partial pooling.

  Shrinkage  
estimation/partial 
pooling

Statistical technique that provides subgroup-specific estimates that leverage information from other relevant subgroups, often 
increasing the precision of the subgroup estimate relative to stand-alone estimates.
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larger the observed effect size in the prior study), the 
greater the influence on the analysis results. Generally 
speaking, a Bayesian analysis based on a noninformative 
prior will require a similar sample size as a frequentist 
analysis. However, Bayesian analyses with informative 
prior distributions often require smaller sample sizes 
than traditional frequentist analyses. In most instances, 
prior knowledge about treatment effects is provided in 
the form of absolute differences or relative effect size 
measures and corresponding uncertainty. Prior distribu-
tions are chosen by the researcher and take different 
forms: priors may be symmetrical, skewed, bimodal, or 
flat. Often for convenience, a normal or log-normal dis-
tribution is assumed on treatment effect parameters. For 
example, when conducting an analysis on a ratio, a prior 
for the log ratio can be specified with a mean (μ) and a 
standard deviation (SD; Figure 1).

Neutral, Optimistic, and Pessimistic Priors
A neutral prior is defined as a prior distribution that is 
centered at zero effect and considers a positive and neg-
ative treatment effect equally likely (in the example of a 
log odds ratio [OR], that number would be 0, correspond-
ing to an OR of 1; Figure 1A). Optimistic priors assign a 
higher probability to a positive treatment effect (ie, they 
have centered at a log odds >0, corresponding to an OR 
>1; Figure 1B) but still allow for the possibility that there 
is a zero or negative treatment effect. Pessimistic priors 
are the opposite of optimistic priors: they assign a higher 
probability to a negative treatment effect (they are cen-
tered at a log odds <0, corresponding to an OR <1) while 

still allowing for the possibility that there is a zero or posi-
tive treatment effect (Figure 1B).

Weakly Informative and Strongly Informative 
Priors
While the terms neutral, optimistic, and pessimistic 
describe beliefs with regard to the direction of effect (ie 
whether there is no effect, benefit, or harm and where 
the mean of the prior distribution lies along this spec-
trum), they do not quantify the strengths of these beliefs. 
The latter is captured in the standard deviation of the 
prior distribution. Weakly informative prior describes 
a prior with a large standard deviation in relation to its 
mean, that is, a widespread distribution (Figure 1). They 
are usually centered at zero effect. While they are some-
times referred to as noninformative priors, they do con-
vey some information about the range of possible values; 
therefore, weakly informative prior is the preferred termi-
nology, with 1 exception: a flat prior distribution literally 
takes the shape of a flat line; that is, it has an infinite SD 
and assigns every treatment effect the same probability. 
Unsurprisingly, when using a weakly informative or unin-
formative flat prior, the results of a Bayesian analysis will 
resemble the results of a frequentist analysis although 
their interpretation is notably different. Strongly informa-
tive priors on the other hand have a narrower standard 
distribution; that is, the range in which the treatment 
effect is assumed to fall is smaller.

The weight of a prior conveys how much information 
is contained in a prior: the more the weight is assigned to 
the prior (ie, the more informative the prior is), the more 

Figure 1. Overview of different prior distributions.
Examples of different prior distributions, namely, neutral priors (A) and optimistic and pessimistic priors (B). Treatment effect is plotted on the x 
axis, and the probability density is plotted on the y axis. The green line in (A) shows a weakly informative neutral prior distribution, with a mean of 
zero and a rather wide standard deviation. The blue line in (A) shows a strongly informative neutral prior with a mean of zero and a rather small 
standard distribution. Compare the shapes of the blue and red curves. The blue curve indicates much higher probabilities of a narrow interval 
centered around zero than the green curve. The purple line in (A) denotes an uninformative (flat) prior that literally assumes the shape of a flat 
line and assigns each treatment effect equal probability. The green line in (B) shows a strongly informative, optimistic prior. The prior is centered 
around a positive treatment effect (in this case, 1), but it does still account for a possible negative treatment effect (green-shaded area under the 
curve). The blue line in (B) shows a strongly informative, pessimistic prior. The prior is centered around a negative treatment effect (in this case, 
−1), but it does still account for a possible positive treatment effect (blue-shaded area under the curve).
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influence the prior has on the posterior distribution. The 
weight of a prior is inversely related to the variance of the 
prior distribution; that is, multiplying the variance by 2 will 
halve the weight of the prior distribution. It is important 
to note that a flat prior distribution on a given scale (eg, 
a log OR scale) can translate into an informative prior 
on a transformed scale (eg, OR scale) or, alternatively, 
if the outcome is measured in a different metric. Hence, 
consideration should be given to understanding the scale 
and impact of a prior distribution. Of note, the definitions 
of weakly informative, optimistic, or pessimistic priors will 
depend greatly on the specific context of each trial and 
will be affected by both the center (eg, mean/median) 
and the variance of the prior distribution. In this regard, 
virtual trial simulations are often used in the design stage 
to help understand and evaluate the impact of prior 
distributions.

How to Define a Prior?
The need to define a prior probability distribution is 
unique to Bayesian statistical approaches, and as such, 
researchers have to face the question of what consti-
tutes the best possible prior for their study. To avoid bias, 
the choice of the prior should be prespecified in a statis-
tical analysis plan in detail before looking at the data. If 
priors are specified post hoc, that is, after the research-
ers have looked at their data, priors may be chosen in 
a biased way, and in the worst case, selective choice of 
prior results could be used to manipulate study results.

The most common approach to Bayesian analyses 
in modern research (and particularly clinical trials) is to 
apply weakly informative priors, which typically allows the 
data to dominate the posterior inference. In most clini-
cal situations, it seems logical to rely on weakly informa-
tive priors. After all, the researchers chose to undertake 
a particular trial or study because they think that there 
is scientific equipoise; that is, the answer to the study 
question is not already known. The prior that best reflects 
this equipoise is a weakly informative prior that allows 
the data collected in the trial to dominate the posterior 
inference. If there is enough prior evidence to construct 
a strongly informative prior, probably there was no suf-
ficient equipoise to conduct the trial/study in the first 
place. In some instances, it is reasonable to select more 
than 1 prior and present a set of analyses. For example, 
1 weakly informative prior centered around zero effect, 
and 1 optimistic prior (ideally based on prior studies) and 
1 pessimistic prior may be presented.

Prior data could stem from previous trials investigating 
the same treatment (eg, when a phase III trial is con-
ducted, the results of a phase II trial could be used to 
inform the prior distribution), previous trials investigat-
ing different but mechanistically similar treatments (eg, 
similar but nonidentical thrombolytic drugs, different 
formulations, or application routes of the same drug), 

high-quality observational studies (particularly in rare 
diseases for which randomized trial data are available), 
or expert consensus.

Relative Weighing of Prior Information
Usually, there is more than 1 existing study that contains 
relevant prior information. Once researchers have identi-
fied prior research that contains relevant prior information 
(being careful not to select studies in a biased manner), 
these studies can be combined into a single prior dis-
tribution or at least boiled down into a small set of prior 
distributions. The challenge is that not all studies may be 
equally relevant: some may be more similar to the current 
study than others, have a larger sample size than others, 
have a lower or higher risk of bias, etc. The relative impor-
tance of prior studies has to be established, and different 
techniques exist to combine and weigh prior information.

A random-effects meta-analysis can be used, whereby 
the weight assigned to a particular study is inverse to the 
deviation of its result from the pooled effect size esti-
mate—the more extreme the results are in comparison to 
the pooled estimate, the lower the study weight.11

Power priors are another method to weigh historical 
data12: first, the heterogeneity between current and his-
torical data is quantified, and a power prior distribution is 
then constructed by raising the likelihood function of the 
historical data to the power a0, whereby 0≤a0≤1. A0=0 
denotes a weakly informative prior, and a0=1 gives full 
weight to the historical data (full borrowing). The weight 
a0 is chosen by the researchers, and usually, a set of 
analyses using different values of a0 is presented.

In many situations, the appropriate weight of informa-
tion incorporated, or borrowed (eg, a0), from historical 
data may be unclear. For example, consider a random-
ized trial in pediatrics for a rare disease that incorporates 
a prior distribution of a treatment effect from an adult-
based study. Because the primary analysis model needs 
to be completely prespecified, and it is unknown how 
similar the treatment effect will be in the pediatric popu-
lation, one could specify a prior distribution that allows 
dynamic borrowing.13 The basic idea of dynamic borrow-
ing is to determine the appropriate amount of information 
to be borrowed based on the observed data. If observed 
data are similar to the historical data, more information is 
borrowed by giving more weight to the prior distribution. 
If observed data are different from historical data, less 
information is borrowed by giving less weight to the prior 
distribution.

The Delphi technique, an iterative forecasting tech-
nique in which a panel of experts works toward a consen-
sus by repeatedly answering structured questionnaires,11 
inserts clinical judgment into weighting. One problem that 
arises with this technique is that experts may be biased 
and assign greater weight to those studies that influence 
the prior distribution in the direction that is more likely 
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to result in the desired/expected posterior distribution. 
Elicitation of study weights is one of the most underre-
searched problems in Bayesian statistics.11

Whatever methods that researchers choose to apply 
to synthesize prior evidence, we suggest to explicitly list 
the sources from which informative priors were gener-
ated, either in the article text, a table, or a supplement, 
and to describe the criteria by which they were selected 
and the rationale behind the selection process. Key 
parameters, including the range, of prior distributions 
should be clearly defined and justified based on exist-
ing evidence, logic, or reasonable assumptions that are 
explicitly stated.

INFLUENCE OF BAYESIAN PRIORS IN 
BAYESIAN POST HOC REANALYSES OF 
TRIALS
Post hoc Bayesian reanalyses of randomized trials with 
frequentist design are becoming increasingly common, 
particularly in scenarios in which a clinically meaningful 
effect size was observed that barely missed the frequen-
tist 0.05 significance mark. As an example, the PROPPR 
trial (Pragmatic Randomized Optimal Platelet and 
Plasma Ratio) randomized patients with severe trauma 
to transfusion of plasma, platelets, and red blood cells in 
a 1:1:1 ratio versus a 1:1:2 ratio. Based on the prespeci-
fied frequentist analysis, the trial failed to demonstrate 
the benefit of 1 transfusion strategy over the other with 
regard to mortality, the primary outcome.14 Lammers et 
al15 reanalyzed the trial data post hoc using a Bayesian 
approach with weakly informative priors and found a high 
probability of the 1:1:1 transfusion scheme being supe-
rior with regard to mortality. They concluded that a post 
hoc Bayesian analysis of the PROPPR Trial found evi-
dence in support of mortality reduction.15 However, such 
a scenario should generally be avoided unless there are 
compelling arguments to perform such analyses because 
choosing priors post hoc is prone to generating biased 
posterior distributions. Examples of trials in stroke with 
an adequately prespecified Bayesian analysis include 

DAWN (Thrombectomy 6 to 24 Hours After Stroke 
With a Mismatch Between Deficit and Infarct Trial)16 and 
ENRICH (Trial of Early Minimally Invasive Removal of 
Intracerebral Hemorrhage).

To illustrate this, we investigate the association of 
endovascular treatment (EVT) and good clinical outcome 
(modified Rankin Scale score, 0–2 at 90 days) in a subset 
of the ESCAPE trial (Randomized Assessment of Rapid 
Endovascular Treatment of Ischemic Stroke), in which 
patients with acute ischemic stroke with large vessel 
occlusion were randomized to undergo EVT in addition 
to the best medical management versus the best medical 
management alone.17 To this end, a binary logistic regres-
sion model with adjustment for patient age and base-
line National Institutes of Health Stroke Scale is used to 
determine the effect size of EVT on 90-day good clinical 
outcomes. First, we reduce the ESCAPE trial sample size 
by randomly dropping observations (but maintaining the 
1:1 ratio between the EVT arm and control arm) until a 
traditional frequentist logistic regression does not show a 
statistically significant EVT treatment effect anymore; this 
is the case at a sample size of 48 patients (24 in the EVT 
arm and 24 in the control arm). Importantly, although, at 
this sample size, the trial would have just failed to show a 
statistically significant result, there is still a strong nomi-
nally positive—albeit not statistically significant—treatment 
effect, again illustrating the limitation of the definition of 
statistically significant. It is in situations like the one we 
artificially created here—at the verge of statistical signifi-
cance and in cases with small sample sizes—where the 
prior choice can often really make a difference, and this 
is what we will illustrate with this example. Then, we per-
form different sets of Bayesian logistic regression analy-
ses with varying priors to illustrate how the results could 
differ based on the choice of the prior (the results are 
summarized in Table 2). The following analyses were con-
ducted in Stata 17.0 (Stata LLC Corp) using the bayes 
and bayesmh commands although Bayesian analyses can 
also be conducted in other statistical software programs, 
for example, with the JAGS (https://mcmc-jags.source-
forge.io/) or STAN (https://mc-stan.org/) and relevant 
packages in R (http://www.rproject.org). An open-source 

Table 2. Treatment Effect of Endovascular Thrombectomy on Good Clinical Outcome at 90 Days in a Random ESCAPE Trial 
Patient Sample (n=48 With 24 Patients From Each Arm)

Analysis Prior 
Adjusted 
OR* 

95% confidence/
credibility interval† 

Posterior probability of 
the adjusted OR being >1 

Frequentist … 1.95 0.47–8.13 …

Bayesian Weakly informative (normal distribution with mean 0 and variance 2) 2.34 0.49–7.11 0.826

Bayesian MR CLEAN full weight (actual standard deviation, 0.51) 2.57 0.90–5.89 0.956

Bayesian EXTEND-IA full weight (actual standard deviation, 0.55) 3.42 1.20–7.98 0.989

Bayesian EXTEND-IA half weight (2× standard deviation, 1.10) 3.20 0.91–8.18 0.967

ESCAPE indicates Randomized Assessment of Rapid Endovascular Treatment of Ischemic Stroke; EXTEND-IA, Endovascular Therapy for Ischemic Stroke With 
Perfusion-Imaging Selection; MR CLEAN, Multicenter Randomized Clinical Trial of Endovascular Therapy for Acute Ischemic Stroke in the Netherlands; and OR, odds ratio.

*Adjusted for patient age and baseline National Institutes of Health Stroke Scale.
†95% CIs are provided for the frequentist regression, and 95% credibility intervals are provided for the Bayesian regression.
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software purely dedicated to Bayesian analysis is also 
available (https://jasp-stats.org).

Frequentist Analysis
After dropping the sample size to 48 patients, the 
results of the frequentist logistic regression resulted in 
an adjusted OR for EVT of 1.95 (95% CI, 0.47–8.13; 
P=0.358; Table 2). The CI crosses 1, and the P value is 
0.358, indicating that the effect of EVT on good clini-
cal outcomes is not statistically significant when using 
a frequentist interpretation. The ESCAPE trial did in fact 
enroll 316 patients and did show a significant benefit of 
EVT,17 but, for now, let us assume that the trial enrolled 
only 48 patients and this is the outcome of the primary 
trial analysis.

Bayesian Post Hoc Analysis With Weakly 
Informative Prior
We now use a weakly informative prior in the form of a 
normal distribution with a log odds mean of 0 and a vari-
ance of 2. Results of a Bayesian post hoc analysis with 
weakly informative priors are shown in Table 2. In this sce-
nario, the influence of the prior is minimal. The adjusted 
OR of EVT is 2.34 (95% credibility interval, 0.49–7.11). 
The 95% credibility interval crosses 1.0, and the poste-
rior probability of the OR being >1 is 0.826, which is less 
than the traditional 0.975 Bayesian threshold required 
for statistical significance. Remember that the Bayesian 
95% credible interval contains the true effect size esti-
mate with a 95% probability (which is often assumed to 
be true but is not actually true for the frequentist 95% 
CI), and the posterior probability is simply the updated 
probability of an event occurring (in this case of the 
OR being >1) after taking into account the new data, in 
this case, the ESCAPE patient data. The Bayesian sig-
nificance threshold of 0.975 for the posterior probability 
using weakly informative prior distributions typically aligns 
with the traditional frequentist 1-sided significance level 
of 0.025 or equivalently a 2-sided significance level of 
0.05. In other words, this particular Bayesian analysis is a 
statistically nonsignificant result using traditional decision 
criteria. Note that the effect size estimate is different from 
the frequentist analysis (most likely due to random vari-
ance introduced by the small sample size), and the 95% 
confidence and 95% credibility intervals are similar and 
relatively wide: both analyses suggest a similar plausible 
range for EVT effect size.

Bayesian Analysis With Informative Prior—MR 
CLEAN
Now, we conduct a second post hoc analysis with an 
informative prior (ie, a prior expressing specific informa-
tion about the effect size estimate by assigning certain 

values a higher probability than others), for example, from 
the MR CLEAN trial (Multicenter Randomized Clinical 
Trial of Endovascular Therapy for Acute Ischemic Stroke 
in the Netherlands), another randomized trial that showed 
significant benefit of EVT, with an adjusted OR of 2.16 
(95% CI, 1.39–3.38).18 When incorporating the MR 
CLEAN EVT OR as a prior with full weight (full borrow-
ing: the raw standard error of the trial effect size estimate 
is used) for the association of EVT and good outcome, 
we would expect the credibility interval to become smaller 
and perhaps, and it may not include 1.0 (after all, we are 
borrowing information from the MR CLEAN trial that 
showed a statistically significant EVT benefit). Incorpo-
rating the MR CLEAN prior results in an adjusted OR of 
2.57 and a 95% credible interval of 0.90 to 5.89. The 
posterior probability of the OR being >1 is 0.956, which 
is less than the traditional 0.975 Bayesian threshold for 
statistical significance but may be thought of as being 
borderline significant using traditional decision criteria.

Bayesian Analysis With Informative Prior—
EXTEND-IA
To further illustrate the influence of the prior choice, we 
now use an alternative prior, namely, the EXTEND-IA trial 
(Endovascular Therapy for Ischemic Stroke With Perfusion- 
Imaging Selection), in which EVT was also beneficial with 
regard to good clinical outcome, with an adjusted OR 
of 4.2 (95% CI, 1.4–12.0).19 Note that the EXTEND-
IA EVT effect size estimate is much larger than the MR 
CLEAN effect size estimate. Unsurprisingly, incorporating 
EXTEND-IA as a prior results in an adjusted OR of 3.42 
(95% credible interval, 1.20–7.98) and a posterior prob-
ability of the OR being >1 of 0.989, which exceeds the 
traditional 0.975 Bayesian thresholds required for statisti-
cal significance. Of note, this analysis gives full weight to 
the prior (full borrowing), assuming that the EXTEND-IA 
design and patient samples were similar to/exchange-
able with ESCAPE. There are, however, many reasons 
to think that this is not the case: for example, ESCAPE 
was mostly conducted in North America and used mul-
tiphase computed tomography angiography as baseline 
imaging, while EXTEND-IA was conducted in Australia 
and used computed tomography perfusion as baseline 
imaging. Thus, we may choose to give partial, rather than 
full weight to the prior (partial borrowing). As mentioned 
earlier, there are systematic approaches to elucidate prior 
study weights, but let us assume that we simply decide to 
assign half weight to the prior information from EXTEND-
IA by multiplying the prior’s standard deviation by 2. This 
results in an adjusted OR for EVT of 3.20 and a 95% 
credible interval of 0.91–8.18. The posterior probability 
of the OR being >1 is 0.967, which is less than the tradi-
tional 0.975 Bayesian threshold for significance and may 
be thought of as being borderline significant. In contrast 
to P values that fail to reach statistical significance, for 
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example, a 2-sided P value of 0.10, the Bayesian pos-
terior probability has a direct probabilistic interpretation 
regardless of whether it has met statistical significance. 
In this example, one could conclude based on the Bayes-
ian analysis that there is a 96.7% probability that EVT 
provides a positive benefit in this population.

The above examples show how sensitive Bayesian 
analyses can be to the choice of the priors and high-
light the importance of sensitivity analyses that explore 
a range of plausible priors. It also becomes evident from 
these examples that in the worst case, selective choice 
of priors and their weights could be used to manipulate 
study results. What should have been done in the above 
example is to identify and combine information from all 
prior studies into a prior distribution using a systematic, 
predefined approach; it is essential that this approach 
should have been described in the ESCAPE trial statisti-
cal analysis plan prior of the investigators gaining knowl-
edge of the trial results.

The critical reevaluation of frequentist trials in a Bayes-
ian framework using a systematic approach can be of 
value. We strongly recommend to prespecify secondary 
Bayesian analyses, and the respective priors that will be 
used in the trial protocol and statistical analysis plan to 
avoid biased post hoc reanalyses. Furthermore, there is 
some value in standardizing the design and reporting of 
Bayesian reanalyses of clinical trials, perhaps accompa-
nied by a checklist similar to the CONSORT checklist 
(Consolidated Standards of Reporting Trials) for reporting 
parallel group randomized trials or the PRISMA checklist 
(Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses) for reporting systematic reviews. Zampieri 
et al20 have proposed standardized approaches to Bayes-
ian reanalysis of clinical trials in critical care and particularly 
the choice of priors in this context, much of which applies 
to stroke medicine as well. Perhaps, the most critical point 
is to use a predefined, standardized set of priors, including 
weakly informative, optimistic, and pessimistic priors.

BAYESIAN ANALYSIS FOR SUBGROUP 
ASSESSMENT
In frequentist statistics, treatment effects and outcomes 
in subgroups are traditionally estimated by the observed 
effect within that particular subgroup; that is, only data 
from that patient subgroup are used to obtain a subgroup 
treatment effect/outcome. Although this is easy to under-
stand, it may not be an ideal method because it can result 
in imprecise estimates, particularly when subgroups are 
small.21 Shrinkage estimation/partial pooling using Bayes-
ian hierarchical models can be used to incorporate data 
from other subgroups of a trial weighted by their similarity 
to the subgroup under investigation to increase the pre-
cision of the subgroup estimate22–24 (Figure 2). Imagine, 
for example, a sex-based subgroup analysis using a new 

thrombolytic drug in patients with acute ischemic stroke. 
When investigating the treatment effect in females, it is 
likely that the data from male patients are not completely 
irrelevant; however, it is almost certainly less relevant than 
the information obtained from female patients. If there is 
such an a priori belief that the treatment will benefit both 
males and females, but the size of the treatment effect may 
be different, a Bayesian hierarchical model allows estima-
tion of separate effects with some degree of partial pooling 
(ie, shrinkage) between the sex-specific treatment effects. 
Shrinkage estimation can be performed with Bayesian 
hierarchical models, which can incorporate multiple levels 
of detail and, thereby, allow us to partition sources of vari-
ability, for example, at the study level, the subgroup level, 
and the patient level (Figure 2A). Shrinkage is based on 
a weighted average of the overall trial’s treatment effect/
outcome and the subgroup of interest’s treatment effect/
outcome. The weights are determined by within-subgroup 
variability and between-subgroup variability: with greater 
within-subgroup variability, borrowing of information from 
other subgroups increases and the estimate moves closer 
to the overall trial’s estimate (Figure 2B), whereas less 
within-subgroup variability decreases borrowing, and the 
estimate will move closer to the subgroup estimate (Fig-
ure 2C). In general, the larger the number of groups, the 
better the ability to estimate the within- and between-
group variations using hierarchical models.

The ENRICH trial (Early Minimally Invasive Removal 
of Intracerebral Hemorrhage) is an example, in which 
Bayesian hierarchical modeling was used to model dif-
ferential surgical benefit in 2 distinct subgroups and 
successfully demonstrated the benefit of minimally 
invasive surgical removal of supratentorial intracerebral 
hemorrhage compared with medical management25 in 
one of the subgroups. The trial evaluated the benefit 
of the surgery on the utility-weighted modified Rankin 
Scale score at 180 days in 2 hemorrhage subtypes: (1) 
basal ganglia hemorrhage and (2) lobar hemorrhage. 
It included prespecified interim analyses to adapt the 
sample size and potentially enrich the study population 
to 1 of the 2 locations if certain prespecified criteria 
were met. A Bayesian hierarchical model was used for 
the interim adaptive decision criteria and for the esti-
mation of subgroup-specific effects at the final analysis. 
The prespecified prior distribution allowed for dynamic 
pooling across locations, in which the magnitude of 
pooling would depend on the similarity of the observed 
treatment effect between the respective subgroup loca-
tions (Figure 2). Using interim enrichment decision cri-
teria based on the Bayesian model, the study stopped 
enrolling to basal ganglia hemorrhage and enriched to 
lobar hemorrhage at the second interim analysis. On 
study completion, the observed treatment effects were 
different across locations (mean difference of modified 
Rankin Scale score at 6 months equal to 0.142 in lobar 
and −0.041 in basal ganglia hemorrhage.26 Thus, the 
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Bayesian model incorporated moderately weak pooling 
(shrinkage) across the 2 groups, with estimated differ-
ences of 0.127 and −0.013 for lobar and basal ganglia 
hemorrhages, respectively. The trial demonstrated the 
superiority of the surgical approach in lobar hemorrhage 
only, with an overall Bayesian probability of benefit for 
the surgical approach equal to 0.981.

SYNERGY OF BAYESIAN STATISTICS AND 
ADAPTIVE TRIAL DESIGN
Adaptive trial designs use the evidence that accumulates 
in the trial to decide how to modify certain aspects of 
the trial design such as inclusion criteria, randomiza-
tion algorithm, and sample size based on prespecified 
rules. Adaptive trial design can apply to both classical 

frequentist and Bayesian statistical approaches and is a 
highly complex topic in itself (see previous review arti-
cle).27 Advantages of adaptive trial designs include the 
potential to reduce sample size and drop arms or dos-
ages. Of note, the use of Bayesian adaptive trial designs 
does not necessarily translate to smaller sample sizes; 
rather, the objective for many of these designs is to maxi-
mize the probability of a successful trial over the inher-
ent uncertainties in the trial; which, sometimes, implies a 
larger sample size, for example, when a Bayesian interim 
analysis recognizes that more patients are required to 
provide sufficient statistical power.

Due to its iterative nature, Bayesian analysis meth-
ods lend themselves well to adaptive trial designs, and 
it is generally easier to combine an adaptive trial design 
with Bayesian statistics rather than with frequentist sta-
tistics although both combinations exist. With Bayesian 

Figure 2. Overview of Bayesian hierarchical modeling and shrinkage estimation.
Schematic overview of Bayesian hierarchical models (A) and 2 shrinkage estimation scenarios (B). A, Bayesian hierarchical model in which 
parameter variability is partitioned into 3 sources (from top to bottom): the study level, the subgroup level, and the patient (P) level. Shrinkage of 
the subgroup results of a trial is determined by the ratio of between-subgroup variability and within-subgroup variability. In (B), treatment effect is 
plotted separately for 2 subgroups of a clinical trial, namely, women (red) and men (blue). On the left-hand side, the observed means are similar 
across subgroups, which implies that the Bayesian hierarchical model has a greater magnitude of partial pooling across the 2 subgroups (greater 
shrinkage). The Bayesian subgroup–specific estimates are pulled toward the other group, with increased precision resulting in more narrow CIs. 
Hence, the Bayesian subgroup–specific estimates are closer to the pooled estimates than the independent estimates. On the right-hand side, the 
observed means are different across subgroups, which implies that the Bayesian hierarchical model has a smaller magnitude of partial pooling 
across the 2 subgroups (less shrinkage). The Bayesian subgroup–specific estimates are pulled slightly toward the other group with little change in 
the width of the CIs. Hence, the Bayesian subgroup–specific estimates are closer to the independent estimates than the pooled estimate. In other 
words, if within-subgroup variability is larger than between-subgroup variability (right), shrinkage estimation will move the subgroup estimates 
closer to the trial’s overall effect size estimate. If between-subgroup variability is larger than within-subgroup variability (left), less weight is given to 
the trial’s overall treatment effect size estimate, and only a little shrinkage of the subgroup estimates toward the overall trial result estimate occurs.
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methods, a prior distribution can be updated to obtain a 
posterior distribution at a given interim analysis, which 
then serves as the prior for the next interim or final 
analysis.28 Bayesian methods can be leveraged to define 
prespecified adaptive trial designs that aim to increase 
the overall probability of trial success by identifying key 
parameters of uncertainty in the trial design stage and 
building a trial design that adaptively responds to the 
accruing data and information on those key parameters. 
In addition, Bayesian modeling allows for more interpre-
table decision rules for adaptations, for example, futility 
criteria based on a clinically meaningful effect or the use 
of predictive probabilities.29

Examples of adaptive Bayesian stroke trials include 
the abovementioned ENRICH trial, the DAWN trial 
(Clinical Mismatch in the Triage of Wake Up and Late 
Presenting Strokes Undergoing Neurointervention With 
Trevo),16 the BEST-II trial (Blood Pressure After Endovas-
cular Stroke Therapy‐II),30 and the StrokeNet thrombec-
tomy endovascular platform, which is currently enrolling 
patients.

Finally, Bayesian adaptive trial designs are well-suited 
for integrated phase 2/3 trial designs. For instance, the 
BEST-II trial used a Bayesian adaptive design to inves-
tigate the benefit of intensive versus standard blood 
pressure lowering after successful EVT.31 The phase 2 
trial used an uninformative prior, and it was prespeci-
fied which criteria need to be met for any active arm to 
advance to phase 3 and which size the phase 3 trial will 
have. None of the arms met these prespecified criteria, 
but had they been met, data-driven priors from phase 2 
for phase 3 would have been available.

BAYESIAN STRATEGIES FOR MISSING 
DATA
Many studies experience a nontrivial amount of missing 
data; this often complicates the interpretation of analy-
sis results. Many strategies exist for frequentist analy-
ses of missing data both in the setting of frequentist and 
Bayesian trial designs. These strategies include single 
imputation/last observation carried forward and mul-
tiple imputation in which several complete data sets are 
imputed, and in a frequentist setting, a single P value is 
derived from the imputed data sets.32

Bayesian models can also be used for data-informed 
imputation. They harness additional variables collected in 
the study (at baseline and during follow-up) that may be 
correlated with the end point (Bayesian multiple imputa-
tions). The correlation of these additional variables with 
the end point is modeled to a large number of com-
plete data sets from which a single Bayesian posterior 
distribution can be obtained, which reflects the uncer-
tainty imposed by the missing data.33 For example, the 
ENRICH trial prospectively defined a primary analysis 

that leveraged 90-day modified Rankin Scale score out-
comes for Bayesian multiple imputation of missing 180-
day modified Rankin Scale score outcomes.25 This 
approach captures the uncertainty of the missing data in 
the derived Bayesian posterior distribution, whereby the 
magnitude of uncertainty in the missing data is deter-
mined by the observed data: if the observed correlation 
between the end point and additional variables is large, 
there is less uncertainty in the Bayesian posterior. How-
ever, if the observed correlation is small, there is greater 
uncertainty in the Bayesian posterior.

BAYESIAN TRIAL DESIGN FOR TRIALS 
SEEKING REGULATORY APPROVAL
In their guidance for the use of Bayesian statistics in 
medical device trials, the US Food and Drug Administra-
tion (FDA) acknowledges that the Bayesian approach 
may, in some instances, be less burdensome than a 
frequentist approach, and reliable prior information can 
justify a smaller sample size or shorter trial duration of 
pilot trials.34 What constitutes reliable information is, 
of course, subjective, and whether a proposed Bayes-
ian study design is fit-for-purpose is determined on a 
case-by-case basis by the agency. Therefore, the FDA 
recommends discussing any Bayesian trial protocol, 
particularly the choice of the priors, with their expert 
team early on at the design stage of the trial.34 Because 
Bayesian analyses often lack closed-form solutions for 
statistical power calculations, FDA guidance documents 
also emphasize the importance of virtual trial simula-
tions to understand the frequentist operating charac-
teristics of a Bayesian design, for example, power and 
type I error.

Importantly, regulatory agencies do not commit to a 
single, universal criterion for study success in the set-
ting of Bayesian trials. In other words, there is no clear 
rule on which posterior probability of a treatment benefit 
would be considered high enough in a Bayesian trial for 
a certain drug or treatment to be accepted by the FDA, 
the European Medicines Agency, and other regular regu-
latory bodies because the clinical context (eg, disease 
severity and prevalence, the risk profile of the treatment) 
is taken into account when determining what constitutes 
an acceptable criterion for study success. While this may 
seem confusing to investigators, the FDA seems to make 
great efforts to establish Bayesian methods in drug and 
device development: Bayesian methods, and particularly 
the agency’s perspective on their usefulness in different 
settings, have been discussed in several recent publica-
tions and guidance for industry documents.23,34–36 These 
efforts, together with the increasing awareness and 
familiarity of researchers with Bayesian methodology, 
will likely make the path to drug/device approval using 
Bayesian trials more clear in the future.

D
ow

nloaded from
 http://ahajournals.org by on O

ctober 23, 2024



TOPICAL REVIEW

Stroke. 2024;55:2742–2753. DOI: 10.1161/STROKEAHA.123.044144 November 2024  11

Ospel et al Bayesian Statistics in Stroke Research

CONCLUSIONS
Stroke research, like all clinical research, must interpret 
the results of any study in the context of the existing 
evidence. While this is something that we all naturally do, 
it is not formalized in frequentist analyses. The iterative 
nature of Bayesian analysis allows researchers to make 
probabilistic statements about key analysis parameters, 
formally incorporate existing evidence into their analy-
sis, pool/borrow information across trial subgroups to 
obtain more precise subgroup estimates, and, paired with 
adaptive trial designs, allow for population enrichment 
according to prespecified rules. Bayesian methods are 
becoming more popular among stroke researchers, and 
the potential of Bayesian trial design and data analysis 
has been recognized by guideline committees and regu-
latory authorities such as the US FDA.34

Due to the subjectivity that is inherent to the choice 
and weighing of prior information, it is crucial that we as 
researchers systematically define and justify our choice 
and weighing of prior information and describe these 
processes a priori in the study protocol. Efforts should be 
made to (1) implement standardized evaluation criteria 
for studies using Bayesian approaches and (2) standard-
ize methodologies for synthesizing existing evidence into 
prior distributions.

If used appropriately, Bayesian approaches to trial 
design and statistics have the potential to increase the 
efficiency of clinical trials, reduce the number of patients 
that are exposed to harmful treatments, and allow us to 
adopt effective treatments earlier.
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